The integrated endocrine control of metabolism. Starvation, stress and general adaptation syndrome.

Long-term regulation of food intake and body weight.

Lo. 76.

Katecholamines:
adrenalin (adrenal medulla) - noradrenalin (sympathetic terminals)

Mobilization of reserves

Activation by: hypoglycemia, workload (fight or flight), trauma etc.

Effects:

Liver: glycogenolysis: α_1 receptor - Ca $^2+$ - calmodulin - phosphorilase-kinase

β_2 receptor - cAMP

increased gluconeogenesis

adipocytes: lipolysis: β_3-receptors (hormone-sensitive lipase)

muscle: permissive (direct effectors: motor nerves)

pancreas: augments glucagon release
Metabolic effects of glucocorticoids (cortisol and cortisone):

Liver – anabolism;
Glycogen synthesis↑ and gluconeogenesis↑
Protein (plasma) synthesis↑

Muscle and adipocytes –catabolism (proteolytic and ketogenic effect)
Decrease in the expression of GLUT-4 transporter

localisation-dependent actions on the lipid metabolism:
- limbs: lipid mobilisation (permissive actions on B3 receptors)
- Trunk, neck, face: adipocyte proliferation

de proteolysis↑ (skin, bones)

Permissive actions: glucagon- and adrenergic-receptors

General Adaptation Syndrome (GAS) induced by physical stressors

Growth hormone (GH)

 oversecretion: seconder (hypophyser) diabetes mellitus

Metabolits affecting GH release:

- Hypoglycaemia, amino acids (pl. arginin): stimulants
- FFA inhibits

Metabolic effects of GH:

High cc.: decreases the insulin sensitivity of peripehral tissues
Enhanced lypolysis - ketogenic action
gluconeogenesis↑, but: protein breakdown is inhibited in the muscles
Major effects of metabolic hormones controlling the overall flow of fuels

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Liver</th>
<th>Muscle</th>
<th>Adipose tiss.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortisol</td>
<td>+ glycogenesis</td>
<td>- amino acid uptake</td>
<td>+ lipolysis</td>
</tr>
<tr>
<td></td>
<td>+ gluconeogenesis</td>
<td>+ proteolysis</td>
<td>- insulin action</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- insulin action</td>
<td></td>
</tr>
<tr>
<td>Growth hormone</td>
<td>+ gluconeogenesis</td>
<td>+ amino acid uptake</td>
<td>+ lipolysis</td>
</tr>
<tr>
<td></td>
<td>+ IGFs/IGFBP</td>
<td>- glucose uptake</td>
<td>- glucose uptake</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>+ glycogenolysis</td>
<td>+ glycogenolysis</td>
<td>+ lipolysis</td>
</tr>
<tr>
<td>Thyroid hormones</td>
<td>+ gluconeogenesis</td>
<td>+ proteolysis</td>
<td>+ lipolysis</td>
</tr>
<tr>
<td></td>
<td>+ ketogenesis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* + stimulates
 - inhibits

(Patho)physiology of fasting and starvation

Early phase of fasting: low insulin/high glucagon levels
Glycogen break down (depletion) + gluconeogenesis

Prolonged fasting, onset of starvation:
Priorities: keep sufficient glucose level – preserve proteins

Hydrolysis of TGs elevates (feeding muscles, liver)
Reduction in the protein degradation (saving)
Reduction in the metabolic rate
Ketogenesis (ketosis) – from 3rd day neurons and cardiomyocytes start to utilize KBs

Survival is determined by the amount of fat stores (1-3 months)
Terminal phase:
Exhaustion of fat reserves
Mobilisation of proteins – loss of function, death
Brain starts to use KBs

Table 30.2 Fuel metabolism in starvation

<table>
<thead>
<tr>
<th>Fuel exchanges and consumption</th>
<th>Amount formed or consumed in 24 hours (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3d day</td>
</tr>
<tr>
<td>Fuel use by the brain</td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>100</td>
</tr>
<tr>
<td>Ketone bodies</td>
<td>50</td>
</tr>
<tr>
<td>All other use of glucose</td>
<td>50</td>
</tr>
<tr>
<td>Fuel mobilization</td>
<td></td>
</tr>
<tr>
<td>Adipose-tissue lipolysis</td>
<td>180</td>
</tr>
<tr>
<td>Muscle-protein degradation</td>
<td>75</td>
</tr>
<tr>
<td>Fuel output of the liver</td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>150</td>
</tr>
<tr>
<td>Ketone bodies</td>
<td>150</td>
</tr>
</tbody>
</table>
Flow chart of energy substrate flow during the chronic phase of starvation

Numbers indicate the estimated substrate flow (g/h)

Determination of the ideal body mass

BMI = Body Mass Index (Quetelet index):

body weight (kg)/(body high in meter)2

normal range: 19-25

The ideal body composition (% of the body weight):

- extra cellular fluid volume: 15%
- total fat content: 20%
- total muscle content: 40%

Complications of obesity

- Cerebrovascular disease (+53%)
- Coronary heart disease (+35%)
- Respiratory disease
- Gallstones
- Hernias
- Arthritis
- Varicose veins

- Diabetes mellitus (+133%)
- Hypertension
- Accidents (+18%)
- Cancer (+16%)
Waist circumference >102 cm
Serum triglycerides↑
HDL↓
Blood pressure > 130/85 mmHg
FBG>7.1 mM

The phenotype of “survival” genes in an environment of plenitude

Note: Prevalence data is among adult US population from 2000 resists (146 million)
Sources:
(3) "The Continuing Epidemic of Obesity and Diabetes in the United States," JAMA, September 13, 2001 - Vol. 286, No. 11.

Leptin (ob/ob) and leptin receptor (db/db) deficient mice: obesity, hyperphagia, hypoactivity – genetic models of obesity

ob/ob mutant (leptin deficient) „wild type”
Leptin (leptos – thin)

The first hormone originating from adipose tissue
Related to cytokines – acts on cytokine-like receptors

Secretion rate and plasma concentration reflects the amount of adipose tissue (mostly subcutaneous)

Acts on hypothalamic neurons – n. arcuatus – anorexigenic effects

Increases the energy expenditure/metabolic rate

Glucocorticoids, inflammatory cytokines inhibit the leptin synthesis

Adiponectin

Synthesized in the fat tissue
Structurally related to complement factors (different multimer complexes)
Plasma concentration is inversely proportional with the size of adipose tissue
Experimental diabetes – improvement of the glycaemic control (increased insulin sensitivity) – muscle and adipose tissue glucose uptake (AMP-kinase pathway)

Feed-back regulation to control the amount of stored fat and body weight

- **Default behavior**
 - Food intake
 - Energy expenditure
 - Hypothalamus

- **Other adipokines:**
 - TNF-α, IL-6 (Insulin-resistance)
 - Adiponectin (BMR↑)

- **High leptin**
 - Positive balance
 - High fat diet

- **Low leptin**
 - Negative balance
 - Food depletion

- **No leptin**
 - Extremely negative balance
 - Genetic leptin null

- **ob/ob**
Resistin (structural similarity with adiponectin)
Adipocyte + tissue macrophages
Decreases insulin sensitivity
Action is antagonized by OADs (risoglitason)